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On the Interplay of Magnetic and Molecular Forces in
Curie-Weiss Ferrofluid Models
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We consider a mean-field continuum model of classical particles in Rd with Ising
or Heisenberg spins. The interaction has two ingredients, a ferromagnetic spin
coupling and a spin-independent molecular force. We show that a feedback
between these forces gives rise to a first-order phase transition with simul-
taneous jumps of particle density and magnetization per particle, either at the
threshold of ferromagnetic order or within the ferromagnetic region. If the direct
particle interaction alone already implies a phase transition, then the additional
spin coupling leads to an even richer phase diagram containing triple ( or higher
order) points.
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mean-field; tricritical; large deviations; maximum entropy principle.

1. INTRODUCTION

Classical systems of particles located in Rd and having some internal
degrees of freedom are a natural object of physical study. Examples of such
systems are

— ferromagnetic fluids, where each particle has an Ising or Heisenberg
spin;

— liquid crystals consisting of long molecules with a dipole-dipole
interaction;

— Coulomb gases of charged particles; and, more generally,
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— multitype particle systems—the internal degrees of freedom then
correspond to the types of the particles.

The last class includes the Widom-Rowlinson model of two types of par-
ticles with a hard-core interspecies repulsion, the first continuum model for
which a phase transition was established rigorously.(29,22) In a closely
related ferrofluid model of the first class, spontaneous magnetization was
established by Gruber and Griffiths.(12) A common generalization of these
models is the continuum Potts model, for which the existence of a phase
transition was recently proved;(9) see also the references therein for related
work.

In all these examples, the phase transition originates from an interac-
tion between the internal degrees of freedom, e.g., the spin orientations, and
it manifests itself as an orientational order resembling the familiar situation
in lattice spin models.(8,23) For continuum models, however, one is
primarily interested in a different kind of critical phenomenon, namely posi-
tional order, which corresponds to a liquid-vapor transition and involves
only the positions of the particles rather than their orientations or types. In
fact, positional order has been established for some models without inter-
nal degrees of freedom—in one dimension,(14) in the Kac-van der Waals
limit,(15,17) and recently for certain long-range interactions by perturbation
about this limit.(16)

In this paper we ask whether a direct interplay of positional and orien-
tational order can be observed in specific situations.3 A physical picture
illustrating an interplay between positions and orientations is the following.
Consider a ferrofluid with a ferromagnetic spin interaction which decreases
with the distance of the particles. A ferromagnetic ordering then induces an
effective increase of the indirect attractive forces between the particles. This
effect should increase the particle density. By the monotonicity of the spin
coupling, the resulting lowering of the average particle distance implies an
increase of the effective spin couplings, and thereby a strengthening of the
ferromagnetic order. This in turn increases the particle density again, and
so on. In thermodynamic terms, this means that certain values of the
particle density and of the magnetization are impossible, so that these
quantities must exhibit a jump. In other words, one expects that a direct
feedback between the positional and the orientational structure of a system
can change the nature of a phase transition from second order to first
order.

3 This question, of course, does no refer to the trivial fact that positional order in one system
can be the consequence of orientational order in another system. This is well-known to be
the case for the single-type Widom-Rowlinson model, which is the one-type marginal of the
two-types Widom-Rowlinson model.(29)
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It is the aim of the present paper to justify the above heuristics in a
specific model. Since more realistic systems seem to be out of reach
presently, we consider a toy model of mean-field type. Namely, we consider
a system of classical particles with Ising or Heisenberg spins which are
coupled by a ferromagnetic Curie-Weiss interaction. The point is that the
exchange rate is inversely proportional to the volume rather than the par-
ticle number (with factor J>0), so that the effective field acting on each
spin is proportional to the magnetization per volume rather than per par-
ticle. This allows for a feedback between the ferromagnetic and positional
features of the model. The spin-independent interaction will be modelled by
a suitable "phenomenological" function g of the particle density. The shape
of g and its relation to J determine the interplay of molecular and ferro-
magnetic forces. In addition to these constituents of the model we have, of
course, the standard parameters B > 0, the inverse temperature, and z > 0,
the activity or "a priori particle density."

We will show that, for suitable choices of these quantities, the model
exhibits a first-order phase transition with simultaneous jumps of particle
density and magnetization. This holds even if the direct particle interaction
g alone does not induce a phase transition. On the other hand, a density-
independent spin-coupling would only lead to a second-order transition. It
is thus clear that the first-order phase transition is indeed a consequence of
some feedback mechanism. If the molecular interaction g already gives rise
to a liquid-vapor transition, the interplay of positional and orientational
order will create an even richer phase diagram containing a tricritical point.

We will now describe our results in some more detail. For simplicity
we assume here that the particles have Ising spins with values + 1. The
ferromagnetic coupling constant J>0 is kept fixed, and we look for the
phase diagram in the (z, B)-quadrant. The first basic fact is the existence of
a continuous curve z = zm(B) which separates the nonmagnetic and the
ferromagnetic parameter regions: The limiting phases of our system are
nonmagnetic when z<z m (B) and ferromagnetic when z>z m (B) . Whether
or not the phase transition at zm(B) is of first order (with jumps of both
density and magnetization) depends on the specific features of g. We there-
fore sketch three scenarios which exemplify the variety of possibilities. ( For
stability reasons we always assume that g grows faster than quadratically.)

Scenario A. While the ferromagnetic phase transition at z = zm(B) is
only of second order for small B, it is of first order when B is sufficiently large.

This scenario occurs if g" is increasing with 0 < 2g"(0) < J; cf. Proposi-
tion 3.2 and Theorem 3.3 below. The simplest example is g(p) = cp3 with
c> 0; see Fig. 1.
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Fig. 1. The case J= 1, g(p) = p3/30. (a) Phase diagram. The ferromagnetic transition curve
z = z m ( B ) splits into two parts: a bold part indicating a first-order phase transition between
nonmagnetic vapor ( N V ) and ferromagnetic liquid (FL), and a broken part corresponding to
a second-order transition at high temperatures. The point A is the liquid-vapor critical point;
the associated inverse temperature BA is determined by the equation 2 g " ( 1 / B A J ) = J. (b) Den-
sky (p) and magnetization per particle (m) for B = 0.5.

Scenario B. The ferromagnetic phase transition at z = zm (B) is still
of second order for small B and of first order for intermediate values of B.
For large B, however, the phase transition at the magnetization threshold
zm(B) is only of second order, while a first-order transition with simul-
taneous jumps of density and magnetization occurs at some z>z m (B) , i.e.,
in the interior of the ferromagnetic parameter region.

This holds, for example, if g" is convex with minimum 0 at some
pm m>0, and 2g"(0)>J; see Corollary 3.6 and Theorem 3.4(c). A typical
example is g(p) = c(p — 1 )4 with c > J/24; cf. Fig. 2.

Scenario C. For some critical inverse temperature Bc and zc =
z m (B c ) , there exist phases with three different densities p _ < p # < p + . The
phases with density p + are ferromagnetic (with positive or negative orien-
tation). The triple point ( z c , B c ) is the endpoint of a first-order (liquid-
vapor) transition line in the (nonmagnetic) region {z<zm(B), B<Bc}; see
Fig. 3. Following this line towards ( z c ,B c ) one obtains the limiting den-
sities p _ and p#. On the other hand, in a neighborhood of the triple point
the ferromagnetic transition at the line z = zm(B) is also of first order.
Approaching (zc, Bc) along this line from below (B <B c ) one arrives at the
limiting densities p# and p + , and coming from above (B>B c) one ends up
with p _ and p + .In other words, for B < Bc there are two density jumps at
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Fig. 2. The case J = 1, g(p) = (p - 1 )4. (a) Phase diagram. The bold and broken curves and
the critical point A have the same meaning as in Fig. 1. In addition to the two phases NV and
FL, there is an intermediate phase FV (ferromagnetic vapor); the solid line separating FV
from FL indicates a first-order phase transition. Since the transition from NV to FV is second
order, the critical point B is not a triple point, (b) Density and magnetization for B = 2.

different activities, one due to the molecular forces and one at the
incipience of ferromagnetic order. These jumps add up at B = Bc, and an
enhanced jump persists for B > Bc.

This scenario occurs, for instance, if g" is convex with min g" < 0, and
J is suitably chosen; see Theorem 3.8 and the example in Fig. 3.

Fig. 3. The case J = 2.5, g(p) = p4 — 4p2. (a) Phase diagram. Bold and broken lines are as
in Fig. 1. The solid line indicates a first-order vapor-liquid transition within the nonmagnetic
region. The point C is a triple point of coexistence of three phases: nonmagnetic vapor (NV),
nonmagnetic liquid (NL), and a ferromagnetic high-density phase which should probably also
be interpreted as a liquid (FL'). B is the V-L critical point, and A the L-L' critical point,
(b) Density and magnetization for B = 0.48.
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Although in the pictures above it is evident that there exist critical
temperatures separating the different regimes of phase transition, it seems
to be difficult to find satisfactory general criteria for this to be the case. We
therefore concentrate on qualitative statements for large or small B.

The paper is organized as follows. In Section 2 we will introduce the
model. Our results are stated in Section 3. We will use a general result from
large deviation theory for marked point processes which allows us to
express the infinite-volume behavior of our model in terms off the mini-
mizers of a free energy functional.(10) The necessary details will be provided
in Section 4. Section 5 contains a general analysis of these minimizers. The
proofs of our main results then follow in Section 6. In the final Section 7
we comment on the physical significance of our results.

2. THE MODEL

We consider a system of particles in Euclidean space4 Rd, d>1. Each
particle is equipped with a spin taking values in the unit sphere E =
{s e RD : |s| = 1} of RD, D> 1. A configuration of such particles (without
multiple occupancies) can be described by a pair w = (X, (ax)x e X), where
X c Rd, the set of occupied positions, is locally finite, in that its intersection
with any bounded set is finite, and ax e E is the spin of the particle at posi-
tion x. Equivalently, one can think of w as a locally finite subset of Rd x E
which has at most one point in each section {x} x E, x e Rd. We write Q
for the set of all such configurations. Q will be endowed with the smallest
cr-algebra for which the counting variable N(B): w^>-'^x e x l{(x ,ax)e B} is
measurable for any Borel subset B of Rdx E.

The a priori probability measure on Q is the Poisson point random
field describing an ideal gas of particles at random positions with random
spins in E. Specifically, let z > 0 be an activity parameter and u an arbitrary
Borel probability measure on E. The Poisson point random field Qzu with
intensity z and spin distribution u is then defined as the unique probability
measure on Q such that, for any measurable function f: Q -> [0, oo[ which
depends only on the configuration of the particles in a box A c Rd of finite
volume \A |,

4 This choice is merely for simplicity. As we are going to consider a mean field model, the
dimension d and the Euclidean structure of Rd will not play any role.
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In particular, z is the expected particle density of Q2u, and conditionally on
the set of occupied positions the spins are i.i.d. with distribution u. (Note
that Qzu depends on z and u only through the finite measure zu, the spin
intensity measure. So, in fact we have defined Qv for any finite measure v
on E.)

We will consider the following choices of u. A priori, we will set u = /.,
the normalized surface measure on E. A posteriori, it will become necessary
to consider, for each external field h e RD, the tilted probability measure

on E. We write Qz,h = Qz/h. In particular, Qz,0 = Qzl. Finally, we introduce
the finite boxes A n = [ — n , n ] d of volume V n=|A n | , n>1, and we write
Qz,h for Qz,h restricted to An, i.e., Qz,h is the image of Qz,h under the
restriction mapping w = (X,((Tx)x e X ) - + w n = (Xr\An,(ax)X ri An). Hence,
Qz,h is a probability measure on Qn= {w = (X, (ax)x e X)eQ : Xn cAn}.

We consider a particle system in An with an interaction of Curie-Weiss
type. More precisely, for w = (X, (ffx)x e X) e Qn we consider the Hamiltonian

where J > 0 is a ferromagnetic coupling constant, g: [ 0, oo [ —> R is a
suitable function describing the molecular mean-field interaction, and # X
is the cardinality of X. The essential features of this Hamiltonian are the
following.

The spin coupling constant is proportional to 1/Vn rather than 1 / # X .
Hence, the mean field acting on a single spin is proportional to the particle
density #X/Vn and the magnetization per particle. This favors high par-
ticle densities, and the system would become unstable without an addi-
tional term in the Hamiltonian. This is a formal reason for introducing the
term with g. In addition, we want to ensure that g gives rise to a positive
feedback of the magnetization to the particle density. It is our objective to
find the relevant features of g for this to occur.

Our general assumptions on g are the following.

(A1) Smoothness, g is analytic on ]0, oo[, and g"(0) = limp io g"(p)
exists.

(A2) Strong stability, g"(p) -» oo as p -> oo, and thus g (p) /p 2 -> oo as
p-* oo.
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For example, g can be any polynomial of degree at least three with positive
leading coefficient. By the way, for a polynomial g(p) = Xk=1 a kP k we can
write

which means that also the molecular part of Hn is given by a many-body
interaction of Curie-Weiss type. We might also require that the x1,..., xk in
the sum above are pairwise distinct because this condition becomes irrele-
vant in the thermodynamic limit.

Let

be the Gibbs distribution in An with Hamiltonian Hn, activity z>0 and
inverse temperature B > 0. As usually,

is the associated partition function. ( Here and below we consider g and D
as fixed, but the other parameters may vary and are thus included into our
notation.)

We are interested in the set &(z, B , J ) of all limiting Gibbs states, i.e.,
of all accumulation points of the sequence ( P n , z , B , J ) n > 1 in the infinite-
volume limit n -» oo. To make this definition precise we need to specify a
topology for probability measures on Q. Rather than the usual weak topol-
ogy, we can use here a finer topology T> which is defined as follows. Let 3?
be the class of all measurable functions f: Q -> R which are local, in that/(w)
only depends on the restriction of w to a bounded box A c Rd, and such that,
for some c< oo, | f (w) |<c( l + #(Xr\A)) for all w = (X, (ax)x e X)eQ. The
topology T<f is then defined as the smallest topology relative to which all
integral mappings P - > \ f dP with f e ^f are continuous. Note that the
mean particle number in any region is x^, -continuous as a function of the
measure.

Theorem 4.1 below will imply that the sequence ( P n , z , B , J ) n > 1 is
relatively sequentially compact in T&. Hence & ( z , B , J ) is always non-
empty, and stating that ^(z, B, J) is a singleton is equivalent to saying that
Pn,z,B,J converges, even in T&, towards the unique element of &(z, B, J).



3. RESULTS

Our first theorem describes the general features of the set of all
limiting Gibbs states.

Theorem 3.1. For any z, B, J> 0, there is a finite set Jt(z, B, J) <=
]0, oo[ such that <$(z, B, J) consists of mixtures of the measures Pp,BJ with
p e,Jf(z, B, J), where

The function h*(BJp) above (which depends on D only and is defined
implicitly as the largest solution of the mean field equation (14)) is positive
and strictly increasing for BJp > D. The set Jt(z, B, J) can be identified as
the set of all minimizers of a suitable variational functional and exhibits, in
particular, the following properties.

(i) For fixed B, J there are at most countably many values of z for
which Jl(z, B, J), and thus $(z, B, J), is not a singleton.

(ii) M ( z , B , J) depends monotonically on z, in that p<p' whenever
z<z ' and p e.J?(z, B , J ) , p' sJ((z', B, J). Also, min ^f(z, B, J) -» oo as
z -> oo and max Jt(z, B, J) -» 0 as z -> 0.

(iii) The graph of the correspondence (z, B , J ) - » < M ( z , B, J) is closed.

Several remarks are in order.

Remarks, (a) The limiting Gibbs state Pp,BJ describes a Poissonian
nonmagnetic phase when p < D/BJ, and a uniform mixture of Poissonian
magnetic phases when p>D/BJ. Moreover, it follows from property (ii)
above that for any B, J>0 there is a unique zm = zm(B, J)e ]0, oo[ such
that the limiting Gibbs states in 0(z, B, J) are nonmagnetic (with density
p < D / B J ) when z<z m and ferromagnetic (with density p > D / B J ) when
z>z m . z m ( B , J ) is therefore the critical activity for magnetization. We will
see later that zm depends continuously on B and J and is strictly decreasing
in J.

(b) For any parameter triple ( z , B , J ) , a first-order phase transition
occurs if and only if B ( z , B , J ) is not a singleton. We then have a jump of
the particle density and of the magnetization per particle. An interesting
particular case occurs when M(z, B, J) contains two elements p_, p+ with
p_ <D/BJ<p + , which is only possible for z = zm(B, J). Then there are a
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nonmagnetic phase of density p- and magnetic phases of strictly larger
density p + with arbitrary orientations. This corresponds to a discontinuous
appearance of magnetization which is coupled to a vapor-liquid transition.

(c) To keep things as simple as possible we did not introduce an
external field into our Hamiltonian (2). This is the obvious reason why the
limiting Gibbs measures PB, BJ above are uniform mixtures of magnetic
phases when BJp > D. Introducing external fields which tend to 0 suf-
ficiently slowly as n -> oo and letting also z vary with n we could obtain a
particular magnetic phase, or a particular mixture, as limiting Gibbs state,
cf. ref. 1. We leave this to the interested reader.

We now turn to a description of various scenarios for a first-order
transition. To begin, we note that such a transition neither occurs at high
temperatures nor for weak ferromagnetic coupling, provided such a transi-
tion is not already induced by the molecular interaction g alone—which
can be excluded by a convexity assumption on g.

Proposition 3.2 (Absence of density jumps). Suppose that either

(i) g and J are arbitrarily given and B>0 is sufficiently small; or

(ii) g is convex, B is fixed, and J>0 is sufficiently small.

Then J ( ( z ,B , J) is a singleton for all z > 0.

Next we state a simple sufficient condition for a first-order transition
from a nonmagnetic vapor to a magnetic liquid at z = z m ( B , J ) according
to Scenario A of the introduction. This condition holds in particular when
g is convex, i.e., if (by Proposition 3.2) there is no first-order phase transi-
tion for vanishing magnetic coupling J = 0. In this case, the jump of density
and magnetization is not induced by the molecular forces alone, but comes
from their interplay with the ferromagnetic forces.

Theorem 3.3 (First-order transition from nonmagnetic vapor to
ferromagnetic liquid). Suppose B , J > 0 are such that J>2g"(D/BJ) .
(Evidently, this holds when either B>0 is arbitrarily fixed and J is suf-
ficiently large, or J>2g"(0) is given and B is sufficiently large.) Then, for
z = z m ( B , J ) , J t ( z , B , J ) contains two densities p_, p + with p_ < D/BJ<p + .

A fairly complete picture can be obtained in the low-temperature
and strong-coupling limits. The low-temperature limit depends on pieces
of non-convexity of the function g(p) — Jp2/2, as is specified in the next
definition.
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Definition. Let f: [0, oo[ ->R be continuous and bounded from
below, and let /** denote its convex envelope. We will say a non-
degenerate interval [ r_ , r + ] is critical for f with slope y if

(i) f**< f on ] r _ , r + [;
(ii) for some e>0, f** and f coincide and are strictly convex on

[ r+ , r+ +e] and, if r_ >0, also on [r_ — e, r_] ; and
(iii) y is the slope of f** on [ r _ , r + ] .

Theorem 3.4 (Low temperature behavior). Let J>0 be fixed. Sup-
pose [ r_ , r+ ] is any critical interval of the function g J ( p ) = g(p) — Jp2/2,
and y is the associated slope. Then the following is true.

(a) For any e>0 and sufficiently large B, there exists a unique
activity z with |B-1 In z — y| <e such that Jf(z, B, J) contains two distinct
elements p_, p+ satisfying | p _ _ — r_ | <s and |p+ — r+ \ <e. (z, p_ and p +

depend on B, e, the critical interval [ r _ , r+] and, of course, J, g, and D.)

(b) Suppose further that g"(r + )> 0 and either, if r_ > 0, g"(r_) > 0
or, if r _ = 0 , g'(0)>y. If B is large enough and z is as in (a) then
J((z,B,J) = {p-,p + }.

(c) Suppose, in addition, that g">0 on [r + , oo[ and, if r_ >0, on
[0,r_], so that [ r _ , r + ] is the only critical interval of gJ. In the case
r_ > 0, we need to assume further that D = 1 or g " ( 0 ) > J(b(D) - 1) for the
constant5 b(D) defined by (19). Then, for sufficiently large B, the activity z
in (a) is the unique value of z for which Jt(z, B, J) is not a singleton.

The behavior for large magnetic coupling is simpler because it is inde-
pendent of the shape of g.

Theorem 3.5 (Strong ferromagnetic coupling). Let B>0 be given
and e > 0. If / is sufficiently large, there exists some z > 0 with J-1 In z <
—e-1 such that J ( ( z , B , J ) contains two densities p_ and p+ satisfying
p_ <e and p + > e - 1 . For D = 1 and any other D for which Lemma 5.2(g)
holds we have Jt(z,B,J) = { p _ , p + }, and # J t ( z , B , J ) = 1 for all z'^z.

As we have claimed in Scenario B of the Introduction it can happen
that, for large B, the ferromagnetic transition at zm is of second order but,
at some z > zm, a jump of both density and magnetization occurs. This is
the subject of the next corollary which applies to convex functions like
g(p) = ( p - 1 } 4 .

5 Numerical calculations suggest that b(D) = 1 for D > 2 , so that the additional assumption is
redundant. But we could not prove this.
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Corollary 3.6 (First-order transition between ferromagnetic phases).
Suppose g" attains its minimum 0 at a single point pmin > 0. If J> 0 is suf-
ficiently small and B is sufficiently large, there is then a unique z> zm(B, J)
such that M(z, B , J ) = { p _ , p + } with D /BJ<p_ < p m i n < p + .

Next we consider the case when g is not convex, which means that the
molecular forces alone already imply a first-order phase transition when B
is large enough. For large /, Theorem 3.3 asserts that there is a discon-
tinuous transition to ferromagnetic order at z = zm(B, J). The next proposi-
tion shows that, for small J, the density jumps induced by g do not imply
a ferromagnetic ordering, so that the magnetization depends continuously
on z. (This statement may be viewed as a counterpart to Proposition 3.2(ii)
for non-convex g.)

Proposition 3 . 7 ( First-order transition between non-magnetic phases).
Suppose that m m p > 0 p g " ( p ) = -l/Bmin<0, B>Bmin, and J is sufficiently
small. Then there exists a unique 0 < z < z m ( B , J ) such that J t ( z , B , J } =
{p _, P + } with p_<p+ < D/BJ, and # M(z', B, J) = 1 whenever z' > z. In
particular, the ferromagnetic phase transition at zm(B, J) is of second
order.

Our final result provides conditions for the existence of two first-order
transition lines which join at a triple point with three different phases. The
first of these transition lines comes frogs the molecular forces alone,
whereas the second is again the result of a feedback between molecular and
magnetic forces. After the joining at the triple point, one has the same pic-
ture as in Theorem 3.3—a discontinuous incipience of ferromagnetic order
at z = zm(B, J) together with a jump of density which is partly due to the
molecular forces but enhanced by the ferromagnetic spin-interaction.

Theorem 3.8 (Existence of a triple point with phases of three dif-
ferent densities). Suppose there exists some unique pmin>0 such that

If B>Bmin is sufficiently close to Bmin, there exist unique numbers
zc = z c (B)>0 and Jc = J c (B )>0 such that J!(zc, B , J c ) = > { p _ , p#, p + },
where 0 < p _ < p # < D / B J c < p + , At least if D=1 and g" is convex, we
have ^t(zc, B , J c ) = { p _ , p#, p + }. In this case we can also state, writing
z, = z m (B,J ) :

(a) If J > J c and J is sufficiently close to Jc then z J <z c , zJ is close
to zc, and .J?(zJ, B, J) contains two distinct elements arbitrarily close to
P- resp. p+.
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(b) If J < J c and J is sufficiently close to Jc then p _ , p # e
Jl(zc, B, J), zJ> zc, zJ is close to zc, and M(z J , B, J) contains two distinct
elements arbitrarily close to p# resp. p +.

It will be evident from the proof that if g alone already admits three
or more nonmagnetic phases at some B then, for suitable J = J c (B) , the
spin-interaction leads to the existence of additional phases of higher den-
sity. This implies the existence of quadruple points, and so on.

The proof will also show that Jc(B) is continuous and strictly
monotone whenever the critical activity for the density jump induced by g
alone is a strictly monotone function of B—which can be checked in special
cases. Then it is possible to replace the independent parameter J in
Theorem 3.8 by B, and we obtain a statement as in Scenario C of the Intro-
duction.

Finally we note that the first-order transition line described in state-
ment (a) may split at some critical point into two branches corresponding
to a second-order transition to ferromagnetic order at z=zm and, on the
other hand, to jumps of density and magnetization in the regime of positive
magnetization. This does in fact occur in situations similar to those
described in Corollary 3.6.

4. THE MAXIMUM ENTROPY PRINCIPLE

Theorem 3.1 will be derived from a more general conditional limit
theorem which was obtained in ref. 10. In this section we will provide the
necessary details. (We might replace E by an arbitrary Polish space in the
following, but for simplicity we stick to the setting of the previous sections.)

Let ME denote the space of all finite Borel measures on E, JIE will be
equipped with the smallest topology which is such that, for any bounded
measurable function f on E, the evaluation map v -> j f dv is continuous.
The relative entropy of two measures u, v e JtE is defined by

It is well-known and easy to see that I(v;/u) >0 with equality if and only
if v = u. Moreover, for any fixed u and c > 0 the sublevel-set {v e JtE:
I ( v ; u ) < c } is compact, cf. ref. 10. We will need the relative entropy in the
special case when u is a multiple of our a priori measure A, and then use
the notation I z ( v ) = I(v; zA) for z > 0.
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The main quantity of interest is the empirical spin intensity measure of
a configuration w e Qn which is defined by

where Sa stands for Dirac measure at a. Its total mass is nothing other than
the particle density, L n , w ( E } = #X/Vn, and the normalized integral

is the average magnetization per particle.
The following theorem is a special case of Corollary 3.6 of ref. 10. It is

a point process counterpart of Sanov's large deviation principle and
Csiszar's associated conditional limit theorem, cf. ref. 5.

Let H: <JfE^-R be a continuous functional such that H ( v ) > —bv(E)
for all v e <ME and some b < oo. We consider the local Hamiltonians

and the associated partition functions Zn,z,B,H and Gibbs distribution
Pn,z,B,H defined in analogy to (4) and (3).

Theorem 4.1. For all z, B>0, the pressure

exists. Moreover, the sequence ( P n , z , B , H ) n > 1 is relatively sequentially com-
pact in Ty, and every accumulation point has the form \ Qvw(dv) for some
Borel probability measure on the non-empty compact set {veJ/E: Iz(v) +
B H ( v ) = - p ( z , B , H ) } .

In Example 4.2 of ref. 10, this theorem was applied to the functional
H ( v ) = — |\ a v ( d f f ) | 2 / 2 v ( E ) for which the Hamiltonian (7) is the direct con-
tinuum analog of the Curie-Weiss lattice model. It was shown that in this
case a second-order phase transition occurs.

The model considered in this paper corresponds to the choice
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v e J(E. Indeed, defining H n ( w ) by (7) in terms of this H we arrive at (2).
To apply Theorem 4.1 we thus need to investigate the free energy func-
tional IZ + BH. We note first that H is obviously continuous. Also, Iz + BH
attains its minimum because Iz has compact sublevel-sets. We will show
that the minimizers are of the form pkh with suitable p >0, h e RD.

To this end we first introduce the logarithmic moment generating
function

of the first coordinate a1 of a. Obviously, <p is analytic, and the symmetry
of A implies that, for all h e RD and h = |h|,

and

For D=1, <p(h) = ln cosh h and #> ' (h ) = tanh h, whereas for D = 3 we have
</>(h) = ln(sinh h/h) and y ' ( h ) = coth h-h-1.

Next, we take an arbitrary v e JtE and set p = v(E). If Iz( v) < co, v is
not supported on a single point. So we can find some h e RD such that
\av(da) = p J o-Ah(dcr). Equation (10) then shows that H(v) = g(p) —
(J/2) p2cp'(h)2, where again h = |h|. In view of (1), pAh has density
u = (p/z) exp[h • a — <p(h)] with respect to zL Since J In u dv = J In u d(pXh),
we conclude from (5) that I z (v) =I(v; pAh) + I z (pA h ) . On the other hand,
using (10) we also see that

It is interesting to note that the first term on the right-hand side is simply
the relative entropy of the Poisson distribution with parameter p relative to
the Poisson distribution with parameter z. The term in the second square
bracket is equal to <p*(m), where m = <p'(h) is the magnetization corre-
sponding to the external field h and (p*(m) = supA€R [hm — < p ( h ) ] , the
Legendre-Fenchel transform of <p, is the so-called Cramer-transform of A
which governs the large deviations of the particle spins. (From this it might
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seem natural to replace the parameter h by m, but it turns out that h is
more convenient to work with.)

Combining the preceding calculations we find that

where h = |h| and Fz,B,J is given by

By the properties of relative entropy, the right-hand side of (11) is minimal
precisely for v = p X h . We thus end up with the following conclusion.

Proposition 4.2. For the functional H in (8) and any z,B>0,
Iz + BH attains its minimum on the set of all measures p/lh for which
(p, |h|) is a minimizer of Fz,B,J.

Since the measures Pn , z ,B ,J in (3) are invariant under simultaneous
rotations of all spins, the measure w in Theorem 4.1 must also exhibit this
rotational invariance. Hence, Theorem 3.1 will follow once we have iden-
tified the minimizers of the functional Fz,B,J. This is the subject of the next
section.

5. THE MINIMIZERS OF Fz,B,J

We start with some properties of the logarithmic moment generating
function q> in (9).

Lemma 5.1. (a) (p is even, nonnegative and strictly convex and
attains its minimum 0 at 0.

(b) q>' is strictly concave on [0, oo[. In particular, (p'(h)/h is strictly
decreasing from ( p " ( 0 ) = 1/D to 0 as h runs from 0 to oo.

Proof. Since <p"(h) is the variance of a1 under Ah for h = (h, 0,..., 0)
and Ah is nondegenerate, it is immediate that (p is strictly convex. For h = 0,
the symmetry of /I implies that ( p " ( 0 ) = \a2*A.(da) for each coordinate i.
Averaging over i we 'see that <p"(0) = 1 /D. The strict concavity of (p' is
proved in Theorem II. 13.5 of ref. 23. |
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In view of Lemma 5.1(b), the equation h = a ( p ' ( h ) with a>0 has a
unique positive solution h * ( a ) >0 if and only if a>D, whereas h * ( a ) = 0
is the only solution when a < D . The function h * ( • ) has the following
properties.

Lemma 5.2. (a) On ]D,<»[, h * ( • ) is strictly increasing and
analytic.

(b) h * ( a ) < a for all a > 0, and h * ( a ) / a -» 1 as a -> oo.

(c) h * (a )~yD + 2(a-D))1/2as a i D.

(d) ( p o h * ( a ) <a for all a >0, and q > ° h * ( d ) / a -> 1 as a-» oo.

(e) c p ° h * ( a ) ~[(D + 2)/2D] (a-D) as a | D.

(f) h'*(a) -» 1 and ( ( f > ° h * ) ' ( a ) ->1 as a-» oo.

(g) For D = l , ( < ? > o h * ) ' ( a ) - l < l / a for all a > l .

(h) For D = l, ( ( p ° h * ) ' is decreasing on ]1, oo[.

The proof will be postponed until the end of this section. Consider
now the variational functional

introduced in (12). From Proposition 4.2 we know that F z , B , J attains its
global minimum. We need to investigate the minimizers. In particular, we
seek conditions under which the minimizer is not unique. To this end we
first fix an arbitrary p>0 and minimize over h. By (12), we can assume
that h>0. Setting 3Fz,B,J/5h = 0 and recalling that < p " ( h ) > 0 we arrive at
the equation

which is the usual mean field equation for the effective external field h resp.
the associated magnetization (p'(h). For B J p < D , this has the unique solu-
tion h = 0. In the case BJp > D, h = 0 is still a solution of (13) but does not
correspond to a minimum because then
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We thus conclude that any global minimizer ( p , h ) of F Z , B , J satisfies the
equation

where (as above) h * ( a ) is the largest solution of the equation h — aq>'(h).
We are thus left with a minimization over the single parameter p, and

we need to find the minimizers of the function p -> F z , B , J ( p , h * ( B J p ) ) . To
this end we write

where

In view of Eq. (13) and its consequence for h'*, the derivative of GB,J exists
and is given by

for all p > 0 (including the singular value p = D/BJ) . By assumptions (A1)
and (A2) and Lemma 5.2(d), we have G ' B , J ( p ) -> — oo as p -> 0 and G ' B , J ( p )
-> oo as p-> co. Consequently, for each c e R the function cp — G B , J ( p )
attains its maximum over p on a compact subinterval of ]0, oo[, so that
the Legendre-Fenchel transform

of GB,J is finite. G*
,J is a convex, and thereby continuous, real function

on R. Geometrically, G *
, J ( c ) is the smallest a e R such that the straight line

p^cp — a of slope c does not exceed GB,J. Consequently, G*
,J coincides

with the Legendre-Fenchel transform of the convex envelope G*,* of GB,J,
which is defined as the largest convex function not exceeding GB,J.
Theorem 12.2 of ref. 21 therefore implies that the convex envelope of GB,J

is indeed equal to the Legendre-Fenchel transform of G *
, J ; this justifies

our notation.
Let pB,J, _(z) and pB,J, +(z) be the left resp. right derivative of G *

, J ( c )
at c = ln z. By convexity, the set DB.J= {z>0 : pB,J, _(z) <pB,J, +(z)} is at
most countable. Now, it is well-known (Theorem 23.5 of ref. 21) and easy
to see that, for each z>0, the function G *

,
* ( p ) — p ln z attains its global

minimum precisely on the interval [pB,J, _(z), pB , J , +(z)] , and this means
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that pB,J, _ ( z ) and pB,J, + (z) are the smallest resp. the largest global mini-
mizer of G B , J ( p ) - p In z. Vice versa, for any p >0 there is a unique : such
that p e [ p B , J , _ ( z ) , pB , J , +(z)] , namely z = exp(G *

,
* ) ' ( p ) . (Note that the

last derivative exists because a kink in the graph of G*,*| would imply a
kink in the graph of GB,J, but this is impossible because GB,J is differen-
tiable.) We thus end up with the following conclusion.

Proposition 5.3. For any z ,B,J> 0, the set of all global mini-
mizers of Fz,B,J is equal to {(p, h * ( B J p ) ) : p e . t f ( z , B , J ) } , where

is a finite set with convex hull [pB,J, _(z) , pB,J, + (z)]. In particular,
#,$(z, B, J) > 1 if and only if G*

,J is not differentiable at ln z.

Proof. It only remains to show that M(z,B,J) is finite. Since
,^(z, B, J) is contained in the set {p > 0 : G ' B , J ( p ) = ln z}, this follows from
the analyticity assumption (A1) and Lemma 5.2(a). |

It is evident that the sets .^(z, B, J) exhibit the monotonicity property
in z stated in Theorem 3.1(ii). The closed-graph property (iii) follows from
the fact that GB,J, G*

,
* and, by convexity and differentiability, also (G*

,
*) '

depend continuously on (B, J). The proof of Theorem 3.1 is therefore com-
plete. We also note that z m ( B , J ) is obviously equal to exp(G*

,
*) ' ( D / B J )

and therefore continuous, and it follows readily from (17) and Lemma
5.2(a) that zm(B, J) is decreasing in J.

Next, by Theorem 26.3 of ref. 21, the set DB,J is empty (i.e., G*
,J, is dif-

ferentiable) if and only if G*
,
* is strictly convex, and this holds if and only

if GB,J is strictly convex. Moreover, Eq. (17), assumption (A1) and Lem-
ma 5.2(a) imply that the second derivative G",J exists everywhere except at
the critical point p = D/BJ. At this point, we will always consider the right-
sided second derivative G "

, J , ( D / B J ) which exists because of Lemma 5.2(e).
Also, G"

,J is piecewise analytic. Its zeroes thus form a countable set. Hence
GB,J is strictly convex if and only if G",J ( p) > 0 for all p > 0. This leads us
to the following criterion for the existence of a first-order phase transition.

Proposition 5.4. For any B>0 and J>0 the following assertions
are equivalent.

(a) For at least some p > 0,

(b) There exists at least one z>0 such that #,^(z, B, J) > 1.
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In this case one can choose z = exp(G*
,
*)' (p), and this is the unique z for

which p belongs to the convex hull of J ( ( z , B , J ) .

We conclude this section with the proof of Lemma 5.2.

Proof of Lemma 5.2. (a) follows from Lemma 5.1(b) and the
implicit function theorem, (b) and (d) are obvious because (p1 < 1 and
(p'(h) -> 1 as h -> oo. For (c), we note that

where B stands for the beta function. Hence

Writing h * ( a ) = a<p'(h*(a)) and expanding <p' up to third order we arrive
at (c). (e) follows from (c) by an expansion of (p; recall from Lemma 5.1
that <p"(0) = 1/D.

(f) Differentiating the relation h * ( a ) = a<p' ° h * ( a ) we find that h ' * ( a )
= ( p ' ° h * ( a ) / ( 1 — a < p " ° h * ( a ) ) for all a>D. In view of (b), ( p ' v h * ( a ) -> 1
and a ~ h * ( a ) as a -> oo. Therefore we only need to show that hq>"(h) -»0
as h-» oo. For D=1, this is obvious because then (p"(h) = (cosh h ) - 2 . So
let D > 1. Setting 8 = h-3/4 and writing Eh and Vh for the expectation resp.
variance relative to /lh with h = (h, 0,..., 0), we obtain

This shows that hq>"(h) -> 0 as h -> oo and completes the proof of the first
statement. The second assertion follows immediately.

(g) Let D=1, a>1, h = h * ( a ) , and t = q>'(h) = tanh h. From the
proof of assertion (f) we know that
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Since h = at by definition of h, the stated inequality can be rewritten as
t2 < (1 + t/h)( 1 - h( 1 - t2)/t). The latter holds if and only if t2 > h2( 1 -t2),
and this is simply the trivial inequality sinh2 h > h2.

(h) Using the notations and formulas from the proof of (g) we can
write

The claimed monotonicity then follows using the series expansion of h =
artanh t. |

6. PROOFS

We introduce the quantity

Lemma 5.2(f) ensures that 1 < b(D) < oo. In fact, it follows from Lemma
5.2(e),(h) that b ( 1 ) = (q> ° h*)' (l) = 3/2, and it is likely that b(D) = 1 for all
D > 2 . This would imply that Lemma 5.2(g) holds also for D> 1, so that
the provisos on D in Theorems 3.4 and 3.5 could be avoided. Unfor-
tunately, we could not prove this.

We begin with the proof of Proposition 3.2 on the absence of first-
order phase transitions.

Proof of Proposition 3.2. We use the criterion of Proposition 5.4.
For fixed /, assumption (A2) implies the existence of some p0>0 such that
g " ( p ) > J b ( D ) for all p > p 0 . Let B be so small that p<D/Jp0 and
m i n p < p 0 g " ( p ) > — 1/Bp0. Then it is easily seen that there is no p satisfying
(18). Similarly, if B is fixed and g">0 we let p0 be so large that
g " ( p ) > b ( D ) for all p > p 0 and J>1 so small that J < D / B p 0 . The result
then follows as in the first case. |

Next, we apply Proposition 5.4 to establish the existence of a first-
order transition from nonmagnetic vapor to ferromagnetic liquid, as stated
in Theorem 3.3. Since p = D/BJ is the critical density for the incipience of
ferromagnetic order, we only need to insert this critical value into (18).

Proof of Theorem 3.3. By Lemma 5.2(e), the right-sided derivative
of 9 ° h * ( a ) at the critical value a = D exists and is equal to (D + 2)/2D.
Hence, G "

, J ( D / B J ) <0 if and only if the hypothesis of the theorem holds.
The result thus follows from Proposition 5.4. |
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Postponing the proofs of Theorems 3.4 and 3.5 until the end of this
section, we now turn to the proof of Corollary 3.6 on the first-order transi-
tion between magnetic phases.

Proof of Corollary 3.6. Let b(D) be as in (19). We fix some
POG ]0, Pmin[ and let J>0 be so small that

( i ) m m p < p 0 g " ( p ) 2 J b ( D ) ;

(ii) the set {g" <J} is an interval ]p1,p2[ satisfying p0<p1<pm i n

<p2, so that g ' ( p ) — Jp has a local maximum at p1 and a local minimum
at p2 and is strictly monotone on the intervals which are separated by these
points; and

(iii) g ' ( P o ) - J p 0 < g ' ( P 2 ) - J p 2 .

(i) is possible because g" is positive on the left of p0, (ii) uses the Taylor
expansion of g" at pmin, and (iii) merely says that the interval ]p1, p2[ on
which g ' ( p ) — Jp decreases is short enough compared with the interval
]p0> p1[ of increase. Recalling that the construction of the convex envelope
corresponds to Maxwell's equal-area construction for the derivative, we see
that our conditions imply that the convex envelope of g(p) — Jp2/2 has a
unique amine piece on an interval [ r _ , r + ] , where r _ > 0 due to (iii).
Hence, if (3 is large enough then D/BJ<p_ for the p_ in Theorem 3.4(a),
so that the corollary follows from this theorem. |

The next result to prove is Proposition 3.7 on first-order transitions in
the nonmagnetic regime.

Proof of Proposition 3.7. Our assumptions on g and B imply that
there is a rightmost interval / on which G"

,0 is negative. By Proposi-
tion 4.3, / is contained in some maximal interval [p_ ,p + ] on which G*

,
*

is affine. Let ln z be the corresponding slope.
Next, assumption (A2) gives us some p1 >p+ such that g" > b ( D ) on

[p1, oo[. Let J e]0, 1] be so small that D/BJ>p 1 . Looking at (18) we
then see that G",J > 0 on [p1, oo[. On the other hand, we also have
G",J=G",0>0 on [p +, D/BJ] . Consequently, GB,J is convex on [p + , <x>[
and coincides with GB,0 on (a neighborhood of) [0, p + ]. This shows that
[ p - , p + ] is also the rightmost maximal interval on which G*

,
* is affine,

and the proposition follows. |

We proceed with the proof of Theorem 3.8 on the existence of triple
points.

Proof of Theorem 3.8. Step 1: Existence of zc. Let B>Bmin be so
close to Bmin that {p>0 : pg"(p) < — 1/B} is an interval. This is possible
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because, by analyticity, pg(p) is convex in a neighborhood of pmin. Then
{G" , 0<0} is an interval containing pmin. Hence there is a unique interval
[p_, p#]

 3 Pmin (depending on B) on which G*
,
* is affine. Let zc = z c (B) >0

be such that ln zc is the corresponding slope.
We observe that p# = p # (B) -> Pmin as B^Bmin. Indeed, otherwise

there would exist some e > 0 and a sequence Bn -»Bmin such that
p#(Bn) — P - ( B n ) >e for all n. By assumption (A2), the sequence ( p # ( B n ) ) is
bounded. Considering suitable limit points and using that G'n, 0 converges
to G'Bmin locally uniformly we then see that G'Bmin would take the same
value at two points of distance e. This is impossible because G'Bmin ,0 is
strictly increasing by assumption on g.

It follows from the preceding observation that B p # g " ( p # ) - > —1 as
B ~^ Bmin. Consequently, choosing p close enough to Bmin we can achieve
that B p # g " ( p # ) < D/2. In the following, we will consider a fixed such B. We
then can assume for simplicity that ln zc = 0 and G B , 0 ( p _ ) = G B , 0 ( p # ) = 0.
(Otherwise we add a linear term to g.)

Step 2: Existence of Jc. Let J#>0 be defined by the equation
p# = D/BJ#. By Lemma 5.2(e) and (18), it then follows from Step 1 that

By the final assumptions of Step 1, this implies that q ( J # ) <0, where

By Lemma 5.2(a) and (17), q(J) is strictly decreasing on [0,J#]. Using
(A2) and the locally uniform convergence of GB,Jn to GB,J when Jn -> J, we
also see that q ( J ) is continuous. Finally, we know from the proof of
Proposition 3.7 that q ( J ) > 0 if J is small enough. Consequently, there is a
unique Jc = J c (B )e ]0, J#[ such that q(Jc) = 0. On [ p # , D / B J c [ _ , GB,JC

equals GB,0, which is strictly convex and increasing on this interval. So, the
infimum defining q(Jc) = 0 is attained for at least one p+>D/BJ c . This
proves the first assertion of the theorem.

Step 3: #Jf(z, B, J) = 3. Suppose that D = 1 and g" is convex. Then
G",0 is convex (cf. (18)) and thereby strictly increasing on [ p # , oo[. Using
Lemma 5.2(h), we conclude that G" ,JC is strictly increasing on [1/BJc, oo[,
and therefore strictly positive on [ p +, oo [, where p + is the smallest
number >1/BJc satisfying G B , J ( p + ) = q(Jc) = 0. Hence GB,Jc is strictly
convex on [ p +, oo [, so that there cannot exist any other p > p + with
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G B , J c ( p ) = q ( J c ) = 0. This shows that , J l ( z , B , J c ) = { p _ , p # , p + }. In the
next two steps, we assume that the last identity holds.

Step 4: The case J>JC. Let Je]Jc,J#]. Then q ( J )<0 , but
G B , J =G B , 0 >0 on ]0, D/BJ]. Hence G*

,
* is affine at least on [ p _ D / B J ]

with negative slope lnzy = ln z m ( B J ) . Let [ p J , _, pj , + ] = > [ p _ , D/BJ] be
the maximal interval on which G*

,
* has slope ln zJ. Then pJ, _, pJ_ + E

J t ( z J , B , J ) . In the limit as J [ J c , all accumulation points of ( p J , _ ) and
(Pj,+) belong to J/(zc, B, Jc), by Theorem 3.l(iii). Since p J , _ < p _ and
pJ, + >D/BJ, it follows that p j , _ - + p _ and pJ, + ->p + . Assertion (a) is
thus proved.

Step 5: The case J<JC. From Step 2 we know that GB , J c(D/BJ c) > 0
= q(Jc} = G B , J c ( p + ). Let J<JC be so close to Jc that still G B , J , ( D / B J ) >

q(J) . We then see that G B , J ( D / B J ) > G B , J ( D / B J ) , whence GB,J has slope
ln Zj = ln zm(B, J) on an interval [ p J , _ , p J , + ] with p # <p J , _<D/BJ <
P J , + . (The first inequality holds because q(J)>0). As J t JC,

and therefore pj, _ [ p#. Arguing as in Step 4 we also see that pJ, + -> p +.
The rest of statement (b) is evident. |

Finally we provide the proof of Theorem 3.4 on the low temperature
limit. The proof of Theorem 3.5 is similar but simpler and will be omitted.

Proof of Theorem 3.4. Let J>0 be given and [ r _ , r+] be any criti-
cal interval of gJ. We can assume that y = 0 and g**=0 on [ r _ , r + ].
(Otherwise we replace g by g(p) = g(p) — yp — c for suitable c e R.) We
consider the scaled functions gB,J = B - 1GB , J . For any p>0 we have

and

Step 1: Choice of S. Let e>0 be given. We can assume that e is so
small that g** is strictly convex on [r+,r+ +e] and, if r_ >0, also on
[ r _ — e , r_] . We may also require that L = r+— r_— 2e>0 and, if r _ >0,
also r_— e>0. Since g J >g** = 0 on ] r _ , r + [, there exists some J>0
such that g J >3S on [r_ +e, r+ — e]. We also require that <5 is so small
that g J ( p ) > 2 d + (p — r+)2d/L for all p>r+ +e. This is possible because
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g** is strictly convex on [ r + , r + +e] . Similarly, if r_ >0 we also stipulate
that g J ( p ) > 2 6 - ( p - r _ ) 2 d / L for all p ^ r _ — e . Finally, we can assume
that 26/L < e.

Step 2: Condition on B. Recall that

By the bounds in Lemma 5.2(b),(d), there exists some n1 >0 such that, for
all B> 1, |gB,J— gJ| <o on [0, n1]. By assumption (A2), there exists some
n2> 1 such that g'J>2d/L on [n2, oo[. (Eq. (20) and again the bound in
Lemma 5.2(d) then show that, for all B, g'B,J>2S/L>0 on |n2, oo[.) We
can assume that n2>r++e. In view of the asymptotics in Lemma
5.2(b)(d), we now can choose B so large that |gB,J,— gJ| <o on [n1, n2].

Step 3: Proof of assertion (a). Let B satisfy the requirement of Step 2.
Then, on the interval [ r_+e , r + — e ] , the inequality g B , J > g J — 5>26
holds. On the other hand, since g** is convex and g**(p + / _)<
g B , J ( p + / - ) < o , we have g**<6' on [ r _ , r + ] . Hence gB,J> g** + d on
[ r _ + e , r+— e]. This shows that g** is affine at least on this interval. Let
q =qB,J be the associated slope and [p_ ,p + ]=> [r_ +e, r+ —e] be the
maximal interval on which g** is affine with this slope. (By assumption
(A2), p+ < oo.) It is then evident that, for z = zB,J = exp Bq, p_,p+e
J ? ( z , B , J ) .

To estimate q and p_ /+ we note that gB,J> — <S on [0, n2] and g'B,J,>0
on [ n 2 > °o[. Hence gB,J,> —d everywhere and therefore g**> —o. This
gives us the estimate

This in turn implies that for all p e [r+ +e, n2]

Hence p + £ [r+ +e, n2]. By our assumption on n2, the case p+ >n2 is also
impossible. Hence p+<r++e. In the case r _ > 0 , the same reasoning
shows that p _ > r_ — e. This completes the proof of (a).

Step 4: Proof of (b). We suppose first that r_ >0. In addition to
the conditions in Step 1, we assume that e is so small that g'J>0 on
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[ _ r _ — e, r_ +e] u [r+ — e, r+ +e], and then require that S is also such
that g">d on the same set. Lemma 5.2(f) implies that |g"B,J,- g"J| <d on
[r_ — E, oo[ when B is large enough. For these B, gB,J is strictly convex on
the intervals [r_ — e, r_ +c] and [r+ — e, r+ +e] containing p_ resp. p + ,
whence gB,J> g*,* on ]p_,p + [• This proves assertion (b) in the case
r _ > 0 .

If r _ =0, the conditions on e and S involving g" in the neighborhood
of r_ are replaced by the condition that g'>S + 2S/L on [0, e]. Let b(D)
be as in (19) and b < oo be such that g" - Jb(D) > -b on [0, e]. By (21),
it then follows that, for any B> 1/eb, gB , J>0 on [0, 1 / B b ] . Let B be so
large that, in addition to our previous assumptions, B-1 l n (Bb)<S . Equa-
tion (20) and Lemma 5.2(d) then show that g'B,J> g' — d>2d/L>q on
[ I / B b , e]. This implies that p_ ^ [1/Bb, e]. It follows that gB,J is strictly
convex on a neighborhood of p_, and thus gB,J,> g**j on ] p _ , p + [ also
in the case r_ = 0.

Step 5: Proof of (c). By Proposition 5.4, the uniqueness of z is equiv-
alent to the fact that gB,J is strictly convex on the intervals [0, p_] and
[p+ > °°[- If D= 1, Lemma 5.2(g) and (21) show that g'B,J> everywhere.
So, in case D = 1 the assertion follows immediately from our assumptions.
In the alternate case we argue as follows. For e as in Step 4, it follows from
(A2) that g">d on [r+ —e, oo[ for some J>0. From Lemma 5.2(f) and
(21) we then see that gB , J>0 on this interval when B is large enough.
If r _ > 0 , we can further assume that gj> 8 on [0, r _ + e ] . Again by
Lemma 5.2(f), we can find some <x> 0 such that 1 — ( < p ° h * ) ' ( B J p ) > —d/J
for all p^<x./B. In view of (21), this shows that gB , J>0 on [a/B, r _ + e ] .
But our additional assumption for the case D > 1 implies that g'B,J > 0 also
on [0, a/B] when B is sufficiently large. This completes the proof of asser-
tion (c). |

7. PHYSICAL COMMENTS

Although the phenomenon of ferromagnetism is usually associated
with matter in the solid state, there is an indication that it also occurs in
liquid ferromagnetic materials such as the AuCo and CoPd alloys, cf.
refs. 18 and 28. This led to intensive theoretical investigations (including
refs. 11, 13, 18, 24, 26, 27, and 31) and is the main physical justification of
the present work.

As we have stated in the introduction, a main feature of "soft"
magnetic materials is an interplay of magnetic and molecular forces. For
magnets on soft lattices, this phenomenon is known as magnetostriction
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and leads to a first-order phase transition with simultaneous jumps of
magnetization and density; cf., e.g., ref. 19 and the references therein. Close
to that, an annealed site-diluted lattice model of agglomeration of
ferromagnetis particles has been considered (by a mean-field approxima-
tion) in ref. 24, while a rigorous study of such class of models is rather
recent, see refs. 4 and 30.

The rich variety of phase transitions in our model with Hamiltonian
(2) is also similar to the behavior of another kind of "soft" material,
namely liquid crystals. In fact it is known (see e.g., ref. 20) that a transition
between the so-called C-A smectic phases can be continuous while the next
transition from the smectic A to the nematic phase N is usually discon-
tinuous with a jump of density, cf. our scenario B. The standard explana-
tion of this phenomenon(20) is based on an interplay of smectic density
order and the magnitude of the nematic alignment; this corresponds to
positional resp. orientational order in our model. Our scenario A can be
realized in the case of the order-disorder transition in nematics when the
third order term in the Landau expansion of the free energy is absent. In
this case it is known that there is a "weak" first-order phase transition to
an ordered phase together with a jump of density, which is again due to the
interplay of positional and orientational order; cf. refs. 20 or 7.

The interplay of magnetic and molecular forces also explains transi-
tions in a new kind of magnetic and dipolar fluids, the ferrocolloids etc,
which are intensively studied, see e.g., refs. 11, 24, 26, 27, and 28. These
systems are stable suspensions of dispersed ferroparticles in liquids
(ferrofluid emulsions). An effective attraction between particles due to
magnetic moments leads to a variety of phenomena such as nucleation into
magnetic dropletlike aggregates, phase separation induced by magnetic
fields, and even solidification into chains—which is a first-order phase
transition; cf. refs. 26, 32, and 33 and the references there. To study these
phenomena we would need to modify our model in such a way that it
provides a local description of the interplay of forces. This means that the
mean-field interaction of our model should be replaced by a suitable short-
range interaction as in refs. 9 and 12.

In refs. 11, 27, and 28, the phase diagram and the spatial structure of
Heisenberg and dipolar fluids were studied by numeric simulation and a
modified mean-field theory in the presence and the absence of the external
field. The phase diagrams obtained there are comparable to our scenario A.

In conclusion we would like to mention that the interplay of forces
studied in the present paper has also been observed in the case of quantum
degrees of freedom.(2,25) Theoretical studies and computer simulations of
classical fluids with internal quantum states show that additional attractive
pair interactions are "turned on" when the internal states are hybritized.
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The resulting phase diagram corresponds to our scenario A, while there is
a specific quantum regime when there is no transition for any densities.(25)
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